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Introduction

Partial Differential Equations (PDE) are widely used for 
developing models in various scientific and technical fields
Analysis of mathematical models based on differential 
equations is provided by the numerical methods
The performed computation is greatly time-consuming

Numerical solving of partial differential equations 
is a subject of intensive research
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Problem Statement

Lets consider the numerical solving of the Dirichlet problem for 
the Poisson equation as the case study for PDE Calculations. 
This problem can be formulated as follows:
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Methods for Solving the Partial Differential Equations…

Method of Finite Differences:
– The solution domain is represented as a discrete set (grid) 

of points (nodes),
– The solution sequence uniformly converges to the Dirichlet

problem solution, while the solution error is of h2 order
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Methods for Solving the Partial Differential Equations…

The Gauss-Seidel method…
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Calculation complexity
T = kmN2

where
- N - number of nodes for each dimension,
- m - number of operations for one node,
- k - number of iterations
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Algorithm 1: The Sequential Gauss-Seidel Algorithm

// Algorithm 12.1
do {
dmax = 0; // maximum deviation of values u
for ( i=1; i<N+1; i++ )
for ( j=1; j<N+1; j++ ) {
temp = u[i][j];
u[i][j] = 0.25*(u[i-1][j]+u[i+1][j]+

u[i][j-1]+u[i][j+1]–h*h*f[i][j]);
dm = fabs(temp-u[i][j]);
if ( dmax < dm ) dmax = dm;

}
} while ( dmax > eps );

Code
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A Computational Example
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ε = 0.1
k  = 210
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Parallel Computations for Shared Memory Systems…

The possible way for obtaining software for parallel 
computations – rewriting the existing sequential programs
Rewriting can be implemented either automatically by a 
complier or directly by a programmer
The second approach prevails as the possibilities of automatic 
program analysis for generating parallel versions of programs 
are rather restricted
The application of new algorithmic languages oriented at 
parallel programming leads to the necessity for a  
considerable reprogramming of the existing software 
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Parallel Computations for Shared Memory Systems…

The possible problem solution is the application of some means 
"outside of programming language". For instance, they may be 
directives or comments which are processed by a special 
preprocessor before the program is compiled
Directives can be used to point out different ways to parallelize a 
program, while the original program text remains the same
The preprocessor replaces the parallelism directives by some 
additional program code  (as a rule in the form of addressing the 
procedures of a parallel library)
If there’s no preprocessor, the compiler would ignore directives 
and construct the original sequential program code
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Parallel Computations for Shared Memory Systems

The unity of the program code for sequential and parallel 
calculations reduces the difficulties in parallel programs’

development and maintenance

Conversion of sequential programs to parallel ones by means of 
directives’ application allows to implement the stage-by-stage 

technology of parallel software development that is greatly 
valued in programming
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OpenMP Technology

To specify program fragments that can be executed in 
parallel, the programmer adds directives (C/C++) or 
comments (Fortran) into the program
These directives (or comments) allow to determine the parallel 
regions of the program 

As a result of this approach the program can be represented as 
a sequence of interleaved serial (one-thread) and parallel 

(multi-thread) parts of the code
Such type of computing is usually referred  as the fork-join 
(or pulsatile) parallelism
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Algorithm 1.2: The first variant of  the Gauss-Seidel parallel
algorithm

// Algorithm 12.2
omp_lock_t dmax_lock;
omp_init_lock (dmax_lock);
do {
dmax = 0; // maximum deviation of values u

#pragma omp parallel for shared(u,n,dmax) private(i,temp,d)
for ( i=1; i<N+1; i++ ) {

#pragma omp parallel for shared(u,n,dmax) private(j,temp,d)
for ( j=1; j<N+1; j++ ) {

temp = u[i][j];
u[i][j] = 0.25*(u[i-1][j]+u[i+1][j]+

u[i][j-1]+u[i][j+1]–h*h*f[i][j]);
d = fabs(temp-u[i][j])
omp_set_lock(dmax_lock);
if ( dmax < d ) dmax = d;

omp_unset_lock(dmax_lock);
} // the end of inner parallel region

} // the end of outer parallel region
} while ( dmax > eps );

Code
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The Results of Computational Experiments

Gauss-Seidel sequential 
method (algorithm 12.1) Parallel algorithm 12.2

k T k T S

100 210 0,06 210 1,97 0,03

200 273 0,34 273 11,22 0,03

300 305 0,88 305 29,09 0,03

400 318 3,78 318 54,20 0,07

500 343 6,00 343 85,84 0,07

600 336 8,81 336 126,38 0,07

700 344 12,11 344 178,30 0,07

800 343 16,41 343 234,70 0,07

900 358 20,61 358 295,03 0,07

1000 351 25,59 351 366,16 0,07

2000 367 106,75 367 1585,84 0,07

3000 370 243,00 370 3598,53 0,07

Grid size

k – the number of iterations,

T – the execution time,

S – the speedup
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Estimation of the Approach

The developed parallel algorithm provides the solution to 
the given problem 
It can be used up to N2 processors for program 
execution 
There are the excessively high synchronization of the 
parallel regions of the program
Low level of processors’ load

Low efficiency
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Problem: Blocking in Mutual Exclusion…

Each parallel thread after processing  values must check 
(and probably change) the value dmax

The permission for using the variable has to  be obtained 
by one thread only. The other threads must be blocked. 
After the shared variable is released the next thread may 
get control, etc.
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Problem: Blocking in Mutual Exclusion
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Parallel execution 

Blocking 

Sequential execution

Processors (threads) 
   1   2    3    4    5   6    7   8 

As a result a multithread parallel program turns practically into 
a sequentially executable code
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Algorithm 1.3: The Second Variant of the Gauss-Seidel 
Parallel Algorithm

// Algorithm 12.3
omp_lock_t dmax_lock;
omp_init_lock(dmax_lock);
do {
dmax = 0; // maximum deviation of values u

#pragma omp parallel for 
shared(u,n,dmax)private(i,temp,d,dm)
for ( i=1; i<N+1; i++ ) {

dm = 0;
for ( j=1; j<N+1; j++ ) {

temp = u[i][j];
u[i][j] = 0.25*(u[i-1][j]+u[i+1][j]+

u[i][j-1]+u[i][j+1]–h*h*f[i][j]);
d = fabs(temp-u[i][j]);
if ( dm < d ) dm = d;

}

omp_set_lock(dmax_lock);
if ( dmax < dm ) dmax = dm;

omp_unset_lock(dmax_lock);
} 

} // the end of parallel region
} while ( dmax > eps ); Code
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The Results of Computational Experiments

Gauss-Seidel sequential 
method (algorithm 12.1) Parallel algorithm 12.2 Parallel algorithm 12.3

k T k T S k T S

100 210 0,06 210 1,97 0,03 210 0,03 2,03

200 273 0,34 273 11,22 0,03 273 0,14 2,43

300 305 0,88 305 29,09 0,03 305 0,36 2,43

400 318 3,78 318 54,20 0,07 318 0,64 5,90

500 343 6,00 343 85,84 0,07 343 1,06 5,64

600 336 8,81 336 126,38 0,07 336 1,50 5,88

700 344 12,11 344 178,30 0,07 344 2,42 5,00

800 343 16,41 343 234,70 0,07 343 8,08 2,03

900 358 20,61 358 295,03 0,07 358 11,03 1,87

1000 351 25,59 351 366,16 0,07 351 13,69 1,87

2000 367 106,75 367 1585,84 0,07 367 56,63 1,89

3000 370 243,00 370 3598,53 0,07 370 128,66 1,89

Grid size
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Estimation of the Approach

Considerable decrease in the number of shared variable 
access
The maximum possible parallelism decreases to the level 
of N
As a result – a considerable decrease in costs of thread 
synchronization and a decrease of computation 
serialization effect

The best speedup parameters
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Problem: Indeterminacy in Parallel Calculations

The generated sequence of data processing may vary at 
several program executions with the same initial data
The location of threads in the problem domain D may be 
different - some threads may pass ahead the others and vice 
versa
This tread location structure can vary from execution to 
execution. The reason of such behavior is a race condition of 
threads

The time dynamics of parallel thread execution 
should not have an influence on calculations 

carried out by parallel algorithms and programs
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Race Condition of Threads

A possible solution: capture and blocking of the used rows

 Processors
(threads)

previous iteration values 

Processor 2 passes ahead  
(the “old” values are used) 

current iteration 
l

1           
2           
3           

1           
2           
3           

1           
2           
3           

Processor 2 lacks behind 
(“new” values are used) 

Processor 2 intermediate (“old” 
and “new” values are used) 

grid nodes, for which the “new”
values are executed 
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Problem: Deadlocks

For the mutual exclusion of access to the grid nodes a set of 
semaphores row_lock[N] may be introduced. It will allow the 
threads to block the access to their grid rows

// the thread is processing the row i
omp_set_lock(row_lock[i]);
omp_set_lock(row_lock[i+1]);
omp_set_lock(row_lock[i-1]);
// processing the grid row i 
omp_unset_lock(row_lock[i]);
omp_unset_lock(row_lock[i+1]);
omp_unset_lock(row_lock[i-1]);

Thread 1 Thread 2 

Row 1 

Row 2 

The threads block first rows 1 and 2 and only then pass over to 
blocking the rest of the rows – deadlock



Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 25 70

Deadlock Avoidance

Approach: the appropriate order in rows’ blocking

// the thread is processing the row i
omp_set_lock(row_lock[i+1]);
omp_set_lock(row_lock[i]);
omp_set_lock(row_lock[i-1]);
// < processing the grid row i >
omp_unset_lock(row_lock[i+1]);
omp_unset_lock(row_lock[i]);
omp_unset_lock(row_lock[i-1]);

Indeterminacy of calculations is not provided yet
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Elimination of Calculation Indeterminacy

To eliminate calculation indeterminacy the Gauss-
Jacobi method can be used, which use separate 
places to store the results of the previous and the 
current iterations
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Algorithm 1.4: The Parallel Gauss-Jacobi method…

// Algorithm 12.4
omp_lock_t dmax_lock;
omp_init_lock(dmax_lock);
do {

dmax = 0; // maximum deviation of values u 
#pragma omp parallel for shared(u,n,dmax)\

private(i,temp,d,dm)
for ( i=1; i<N+1; i++ ) {

dm = 0;
for ( j=1; j<N+1; j++ ) {

temp = u[i][j];
un[i][j] = 0.25*(u[i-1][j]+u[i+1][j]+

u[i][j-1]+u[i][j+1]–h*h*f[i][j]);
d = fabs(temp-un[i][j])
if ( dm < d ) dm = d;

}

to be continued
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Algorithm 1.4: The Parallel Gauss-Jacobi method

omp_set_lock(dmax_lock);
if ( dmax < dm ) dmax = dm;

omp_unset_lock(dmax_lock);
} 

} // the end of parallel region

for ( i=1; i<N+1; i++ ) // data update
for ( j=1; j<N+1; j++ ) 

u[i][j] = un[i][j];
} while ( dmax > eps );

Code
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The results of Computational Experiments

Sequential Gauss-Jacobi method 
(algorithm 12.4)

Parallel Gauss-Jacobi method developed on 
the analogy of the algorithm 12.3

k T k T S

100 5257 1,39 5257 0,73 1,90

200 23067 23,84 23067 11,00 2,17

300 26961 226,23 26961 29,00 7,80

400 34377 562,94 34377 66,25 8,50

500 56941 1330,39 56941 191,95 6,93

600 114342 3815,36 114342 2247,95 1,70

700 64433 2927,88 64433 1699,19 1,72

800 87099 5467,64 87099 2751,73 1,99

900 286188 22759,36 286188 11776,09 1,93

1000 152657 14258,38 152657 7397,60 1,93

2000 337809 134140,64 337809 70312,45 1,91

3000 655210 247726,69 655210 129752,13 1,91

Grid size
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Estimation of the Approach

Uniqueness of the calculations
Use of the additional memory
Smaller convergence rate 

Another possible approach to eliminate the mutual 
dependences of parallel threads is to apply the red/black 
row alteration scheme. In this scheme the execution of each 
iteration is subdivided into two sequential stages:

– At the first stage only the rows with even numbers are 
processed,

– At the second stage - the rows with odd numbers are used
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Red/Black Row Alteration Scheme

 
           

          
          
          
          
          
          
          

border values previous  iteration values 

Stage 1 

          
          
          
          
          
          
          
          

Stage 2 

values after stage 1 of the current 
iteration  

values after stage 2 of the current 
iteration  
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Estimation of the Approach…

No additional memory is required
The algorithm guarantees uniqueness of calculations, 
which do not coincide with the results obtained by means of 
sequential algorithm
Smaller convergence rate 

Potentiality for the increase in the efficiency 
of calculations
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Estimation of the Approach

The Gauss-Jacobi method Red/black row alteration 
scheme

Additional memory is not 
required

Use of the additional 
memory

The algorithm guarantees uniqueness of calculations, 
though the obtained results may not coincide with the 
results of the sequential calculations

Calculation schemes demonstrate the convergence 
rate, which is worse than the original convergence 
rate of the Gauss-Seidel method
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Parallel Wave Computation Scheme…

Let us now consider the parallel algorithms with the following 
characteristics - the performed calculations and the obtained results 
have to be completely identical to the ones of the original sequential 
method
Among such techniques - the wavefront or hyperplane method
The wavefront method can be explained as follows – it is evident that to 
provide calculations identical as at the original sequential method the 
following should be taken into account:
– At the first step the node u11 may be processed only,
– Then – at the second step - the node u21 and u12 may be recalculated, etc.

As a result at each step the nodes that may be processed form 
a bottom-up grid diagonal with the numbers determined by the step 
number
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Parallel Wave Computation Scheme…
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Algorithm 1.5: Parallel Algorithm Based on Wave
Calculation Scheme…

// Algorithm 12.5
omp_lock_t dmax_lock;
omp_init_lock(dmax_lock);

do {
dmax = 0; // maximum variation of values u

// growing wave (nx – wave size)
for ( nx=1; nx<N+1; nx++ ) {

dm[nx] = 0;
#pragma omp parallel for shared(u,nx,dm) private(i,j,temp,d)

for ( i=1; i<nx+1; i++ ) {
j    = nx + 1 – i;
temp = u[i][j];

u[i][j] = 0.25*(u[i-1][j]+u[i+1][j]+u[i][j-1]+u[i][j+1]*h*f[i][j]);
d = fabs(temp-u[i][j])
if ( dm[i] < d ) dm[i] = d;

} // the end of parallel region
}  
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Algorithm 1.5: Parallel Algorithm Based on Wave
Calculation Scheme

// decaying wave
for ( nx=N-1; nx>0; nx-- ) {
#pragma omp parallel for shared(u,nx,dm) private(i,j,temp,d)

for ( i=N-nx+1; i<N+1; i++ ) {
j    = 2*N - nx – I + 1;
temp = u[i][j];
u[i][j] = 0.25*(u[i-1][j]+u[i+1][j]+u[i][j-1]+u[i][j+1]–h*h*f[i][j]);
d = fabs(temp-u[i][j])
if ( dm[i] < d ) dm[i] = d;

} // the end of parallel region
}

#pragma omp parallel for shared(n,dm,dmax) private(i)
for ( i=1; i<nx+1; i++ ) {

omp_set_lock(dmax_lock);
if ( dmax < dm[i] ) dmax = dm[i];

omp_unset_lock(dmax_lock);
} // the end of parallel region

} while ( dmax > eps );

Code
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Parallel Wave Computation Scheme

The final part of calculations for computing the maximum deviation of 
values u is the least efficient due to high additional synchronization 
cost 
Chucking (fragmentation) – the technique of increasing sequential 
computation blocks to reduce the synchronization cost 
The possible variant to implement this approach may be the following:

chunk = 200; // sequential part size
#pragma omp parallel for shared(n,dm,dmax)private(i,d)
for ( i=1; i<nx+1; i+=chunk ) {
d = 0;
for ( j=i; j<i+chunk; j++ )
if ( d < dm[j] ) d = dm[j];

omp_set_lock(dmax_lock);
if ( dmax < d ) dmax = d;

omp_unset_lock(dmax_lock); 
} the end of parallel region
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The Results of Computational Experiments

Sequential Gauss-Seidel 
method (algorithm 12.1) Parallel algorithm 12.5

k t k t S

100 210 0,06 210 0,30 0,21

200 273 0,34 273 0,86 0,40

300 305 0,88 305 1,63 0,54

400 318 3,78 318 2,50 1,51

500 343 6,00 343 3,53 1,70

600 336 8,81 336 5,20 1,69

700 344 12,11 344 8,13 1,49

800 343 16,41 343 12,08 1,36

900 358 20,61 358 14,98 1,38

1000 351 25,59 351 18,27 1,40

2000 367 106,75 367 69,08 1,55

3000 370 243,00 370 149,36 1,63

Grid size
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Estimation of the Approach

Low efficiency of cache use
In order to increase the computation performance by 
efficient cache utilization the following conditions need to 
be provided: 

– The performed calculations use the same data repeatedly 
(data processing locality),

– The performed calculations provide access to memory 
elements with sequentially increasing addresses 
(sequential access) 

To meet such requirements the procedure of processing 
some rectangular blocks of the grid should be considered
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Block-structured (Checkerboard) Decomposition

         

         
         

         

         
         
         

         

border values 

previous iteration values 

current iteration values  

nodes which values can be 
recalculated 

values, which must be 
transmitted among the block 
borders 

  grid node 
blocks 
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Algorithm 1.6: Wavefront Method Base on
Checkerboard Data Decomposition

//Algorithm 12.6
do {
// growing wave (wave size is nx+1)

for ( nx=0; nx<NB; nx++ ) { // NB block number
#pragma omp parallel for shared(nx) private(i,j)

for ( i=0; i<nx+1; i++ ) {
j = nx – i;
// <processing a block with coordinates (i,j)>

} // the end of parallel region
}
// decaying wave
for ( nx=NB-2; nx>-1; nx-- ) {

#pragma omp parallel for shared(nx) private(i,j)
for ( i=0; i<nx+1; i++ ) {
j = 2*(NB-1) - nx – i;
// <processing a block with coordinates (i,j)>

} // the end of parallel region
}
// <calculation of error estimation >

} while ( dmax > eps ); Code
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The Results of Calculation Experiments

Sequential Gauss-Seidel 
method (algorithm 12.1) Parallel algorithm 12.5 Parallel algorithm  12.6

K T k T S k T S

100 210 0,06 210 0,30 0,21 210 0,16 0,40

200 273 0,34 273 0,86 0,40 273 0,59 0,58

300 305 0,88 305 1,63 0,54 305 1,53 0,57

400 318 3,78 318 2,50 1,51 318 2,36 1,60

500 343 6,00 343 3,53 1,70 343 4,03 1,49

600 336 8,81 336 5,20 1,69 336 5,34 1,65

700 344 12,11 344 8,13 1,49 344 10,00 1,21

800 343 16,41 343 12,08 1,36 343 12,64 1,30

900 358 20,61 358 14,98 1,38 358 15,59 1,32

1000 351 25,59 351 18,27 1,40 351 19,30 1,33

2000 367 106,75 367 69,08 1,55 367 65,72 1,62

3000 370 243,00 370 149,36 1,63 370 140,89 1,72

Grid size
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Estimation of the Approach

Block processing is performed on different processors and 
the blocks are mutually disjoint - as a results there are no 
additional costs to support for cache coherency of different 
processors 
The situations when processors stay idle are possible

It is possible to increase the efficiency of calculations
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Processor Load Balancing

The block size determines the granularity of parallel 
computations
Choosing the level of granularity it is possible to provide the 
required efficiency of parallel methods
To provide the uniform processor loads (load balancing) all 
the computational works can be arranged as a job queue
In the course of computations the processor, which is already 
unloaded, may ask for a job from the queue

A job queue is the general management scheme of 
load balancing for a shared memory system



Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 46 70

Algorithm 1.7: Load Balancing Based on 
Job Queue Management Scheme

//Algorithm 12.7
// <data initialization> 
// <loading the initial block pointer into the job queue>
// pick up the block from the job queue (if the job queue is not empty)
while ( (pBlock=GetBlock()) != NULL ) { 
// <block processing> 
// marking the neighboring block readiness for processing
omp_set_lock(pBlock->pNext.Lock); // right-hand neighbor 

pBlock->pNext.Count++;
if ( pBlock->pNext.Count == 2 ) 

PutBlock(pBlock->pNext);
omp_unset_lock(pBlock->pNext.Lock);
omp_set_lock(pBlock->pDown.Lock); // lower neighbor

pBlock->pDown.Count++;
if ( pBlock->pDown.Count == 2 ) 

PutBlock(pBlock->pDown);
omp_unset_lock(pBlock->pDown.Lock);

} // the end of computations, as the queue is empty
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Parallel Computations for Distributed Memory Systems

Many parallel computation problems such as the 
race condition, deadlocks, serialization are common 
for the systems with shared and distributed memory 

The communication of parallel program parts on 
different processors can only be provided through 
message passing
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Data Decomposition Schemes

In the considered the Dirichlet problem there are two 
different data decomposition schemes: 
– The one-dimensional or striped decomposition of 

the domain grid,
– The two-dimensional or block-structured

(checkerboard)  decomposition of the domain grid
In case of striped decomposition the domain grid is 
divided into horizontal or vertical strips 
The number of strips is defined by the number of 
processors. The size of strips is usually equal 
The strips are distributed among the processors for 
processing 
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Striped Decomposition

Remarks:
– The border rows of the previous and the next strips should 

be copied on the processor, which performs processing 
a strip, 

– Border row copying should be performed prior to the 
beginning of the execution of each method iteration
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Algorithm 1.8: The Gauss-Seidel Method, the Striped
Data Decomposition

// Algorithm 12.8
// The Gauss-Seidel method, the striped decomposition
// operations performed on each processor
do {

// <border row exchange between the neighbors>
// <strip processing>
// <calculating the computational error dmax>

while ( dmax > eps ); // eps – the required accuracy

Code
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Data Distribution between Processors…

At the first stage each processor 
transmits its lowest border row to 
the following processor and 
receives the analogous row from 
the previous processor 
At the second stage processors 
transmit their upper border rows to 
the previous neighbors and receive 
the analogous rows from the 
following neighbor
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Data Distribution between Processors…

Carrying out such data transmission operations may be 
implemented as follows:
// transmission of the lowest border row to the following
// processor and receiving the transmitted border row 
// from the previous processor

if ( ProcNum != NP-1 )Send(u[M][*],N+2,NextProc);
if ( ProcNum != 0 )Receive(u[0][*],N+2,PrevProc);

Such implemented scheme produces the strictly sequential 
execution of data transmission operations
Applying nonblocking communications may not provide an 
efficient parallel scheme of processor interactions



Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 53 70

Parallelization of Data Communications

At the first step all odd processors transmit data, and the even
processors receive the data 
At the second step the processors change their roles: the even 
processors perform the operation Send, the odd processors 
perform the operation Receive

// transmission of the lowest border row to the following processor
// and receiving the transmitted row from the previous processor
if ( ProcNum % 2 == 1 ) { // odd processor
if ( ProcNum != NP-1 )Send(u[M][*],N+2,NextProc);
if ( ProcNum != 0 )Receive(u[0][*],N+2,PrevProc);

}
else { // even processor
if ( ProcNum != 0 )Receive(u[0][*],N+2,PrevProc);
if ( ProcNum != NP-1 )Send(u[M][*],N+2,NextProc);

}
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Collective Communications

Operation of accumulating and broadcasting the data may be 
implemented by the use of the cascade scheme
Obtaining of the maximum value of local errors calculated by the
processors may be provided by means of the following 
technique:
– At the first step finding of the maximum values for pairwise grouped 

processor - such calculations may be performed at different processor 
pairs in parallel, 

– At the second step analogous pairwise calculations may be applied for 
finding the maximum  values among the obtained results, etc.

According with the cascade scheme it is necessary to perform 
log2p of parallel iterations to calculate the total maximum value 
(p is the number of processors) 
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Algorithm 1.8: The Gauss-Seidel Method, Implementation
with Collective Communication Operations

// Algorithm 12.8 – Implementation with Collective Operations

// The Gauss-Seidel method, the striped decomposition
// operations performed on each processor
do {

// border strip row exchange with the neighbors 
Sendrecv(u[M][*],N+2,NextProc,u[0][*],N+2,PrevProc);
Sendrecv(u[1][*],N+2,PrevProc,u[M+1][*],N+2,NextProc);

// <strip processing with the error estimation dm >
// <calculating the computational error dmax> 
Reduce(dm,dmax,MAX,0);

Broadcast(dmax,0);

} while ( dmax > eps ); // eps – the required accuracy
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The Results of Calculations Experiments

Gauss-Seidel sequential 
method Parallel algorithm 1.8

k T k T S

100 210 0,06 210 0,54 0,11

200 273 0,35 273 0,86 0,41

300 305 0,92 305 0,92 1,00

400 318 1,69 318 1,27 1,33

500 343 2,88 343 1,72 1,68

600 336 4,04 336 2,16 1,87

700 344 5,68 344 2,52 2,25

800 343 7,37 343 3,32 2,22

900 358 9,94 358 4,12 2,41

1000 351 11,87 351 4,43 2,68

2000 367 50,19 367 15,13 3,32

3000 364 113,17 364 37,96 2,98

Grid size
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Striped Wavefront Computations

To form a wavefront calculations each strip can be 
represented logically as a set of blocks
As a result of such logical structure the wavefront
computation scheme may be executed.  At the first step the 
block marked by the number 1 may be processed. Then – at 
the second step – the blocks marked by the number 2 may be 
recalculated, etc. 
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Block-structured (Checkerboard) Decomposition…

In case of the block-structured (checkerboard) data 
decomposition the number of the border rows on 
each processor is increased, which leads 
correspondingly to a greater number of data 
communications in the border row transmission (but 
the number of transmitted elements is reduced) 
The use of the checkerboard scheme of data 
decomposition is appropriate if the number of grid 
nodes is essentially large 
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Block-structured (Checkerboard) Decomposition…

// Algorithm 12.9
// The Gauss-Seidel method, the striped decomposition
// operations executed on each processor
do {
// obtaining border nodes
if ( ProcNum / NB != 0 ) { // nonzero row of processors
// obtaining data from upper processor
Receive(u[0][*],M+2,TopProc); // upper row
Receive(dmax,1,TopProc);      // computational error

}
if ( ProcNum % NB != 0 ) { // nonzero column of processors
// obtaining data from left processor
Receive(u[*][0],M+2,LeftProc); // left column
Receive(dm,1,LeftProc);        // computational error
If ( dm > dmax ) dmax = dm;

}  
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Block-structured (Checkerboard) Decomposition

// <processing a block with computational error dmax >
// transmission of border nodes
if ( ProcNum / NB != NB-1 ) { // processor row is not last
//data transmission to the lower processor
Send(u[M+1][*],M+2,DownProc); // bottom row
Send(dmax,1,DownProc);        // computational error

}
if ( ProcNum % NB != NB-1 ) { // processor column is not last

// data transmission to the right processor
Send(u[*][M+1],M+2,RightProc); // right column
Send(dmax,1, RightProc);       // computational error

}
// synchronization and distribution of the value dmax
Barrier();
Broadcast(dmax,NP-1);

} while ( dmax > eps ); // eps – the required accuracy 

Code
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Computational Pipelining (Multiple Wavefront
Computation Scheme)…

The wavefront computation efficiency decreases 
considerably because the processors perform calculations 
only at the moment when their blocks belongs to the wave 
computation front 

To improve the load balancing among the processors a 
multiple wavefront computation scheme can be applied 

The multiple wavefront method can be explained as 
follows: the processors may start  processing the blocks of 
the following wave after executing the current calculation 
iteration 
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Computational Pipelining (Multiple Wavefront
Computation Scheme)
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Overview of Data Communications in Solving Partial 
Differential Equations
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Summary

The ways of parallel algorithm development for the systems 
with shared and distributed memory are discussed on the 
example of solving the partial differential equations
In case of parallel computations on the systems with shared 
memory the main attention is given to the OpenMP
technology; various aspects concerning with parallel 
programming are considered 
In case  of parallel computations on the systems with 
distributed memory the problems of the data decomposition 
and the information communications between the processors 
are discussed; striped and checkerboard decomposition 
schemes are presented
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Discussions

What are the ways to increase the efficiency of 
wavefront methods?
How can the job queue balance the computational 
load?
What problems have to be solved in the process of 
parallel computation on distributed memory 
systems? 
What basic operations of data communications are 
used in the parallel methods of the Dirichlet
problem?
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Exercises

Develop the parallel algorithm implementation of 
the wavefront computation scheme including the 
block-structured data decomposition scheme 
Develop theoretical estimation of the algorithm 
execution time
Carry out the computational experiments. Compare 
the results of computational experiments and the 
obtained theoretical estimations 
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Next Section

Parallel Methods for Global Optimization
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The purpose of the project is to develop the set of educational materials for the 
teaching course “Multiprocessor computational systems and parallel programming”. 
This course  is designed for the consideration of the parallel computation problems, 
which are stipulated in the recommendations of IEEE-CS and ACM Computing 
Curricula 2001. The educational materials can be used for teaching/training 
specialists in the fields of informatics, computer engineering and information 
technologies. The curriculum consists of the training course “Introduction to the 
methods of parallel programming” and the computer laboratory training “The 
methods and technologies of parallel program development”. Such educational 
materials makes possible to seamlessly combine both the fundamental education in 
computer science and the practical training in the methods of developing the 
software for solving complicated time-consuming computational problems using the 
high performance computational systems. 

The project was carried out in Nizhny Novgorod State University, the Software 
Department of the Computing Mathematics and Cybernetics Faculty 
(http://www.software.unn.ac.ru). The project was implemented with the support of 
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