
University of Nizhni Novgorod
Faculty of Computational Mathematics & Cybernetics

Section 12.

Parallel Methods for Partial Differential Equations

Introduction to Parallel Introduction to Parallel
ProgrammingProgramming

Gergel V.P., Professor, D.Sc.,
Software Department

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 2 70

Contents…

Problem Statement
Methods for Solving the Partial Differential Equations
Parallel Computations for Shared Memory Systems:
– Problem of Blocking in Mutual Exclusion
– Problem of Indeterminacy in Parallel Calculations
– Race Condition of Threads
– Deadlock Problem
– Elimination of Calculation Indeterminacy
– Parallel Wave Computation Scheme
– Block-structured (Checkerboard) Decomposition
– Load Balancing

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 3 70

Contents

Parallel Computations for Distributed Memory Systems:
– Data Decomposition Schemes
– Striped Decomposition
– Parallelization of Data Communications
– Collective Communications
– Block-structured (Checkerboard) Decomposition
– Computational Pipelining (Multiple Wave Computation

Scheme)
– Overview of Data Communications in Solving Partial

Differential Equations
Summary

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 4 70

Introduction

Partial Differential Equations (PDE) are widely used for
developing models in various scientific and technical fields
Analysis of mathematical models based on differential
equations is provided by the numerical methods
The performed computation is greatly time-consuming

Numerical solving of partial differential equations
is a subject of intensive research

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 5 70

Problem Statement

Lets consider the numerical solving of the Dirichlet problem for
the Poisson equation as the case study for PDE Calculations.
This problem can be formulated as follows:

⎪⎩

⎪
⎨
⎧

∈=

∈=+

,),(),,(),(

,),(),,(
0

2

2

2

2

Dyxyxgyxu

Dyxyxf
y
u

x
u

δ
δ

δ
δ

}1,0:),{(≤≤∈= yxDyxD

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 6 70

Methods for Solving the Partial Differential Equations…

Method of Finite Differences:
– The solution domain is represented as a discrete set (grid)

of points (nodes),
– The solution sequence uniformly converges to the Dirichlet

problem solution, while the solution error is of h2 order

⎩
⎨
⎧

+=
+≤≤===

),1/(1
,1,0,,:),{(

Nh
NjijhyihxyxD iijih

ij
ijjijijiji f

h
uuuuu

=
−+++ +−+−

2
1,1,,1,1 4

)(25.0 2
1,1,,1,1 ijjijijijiij fhuuuuu −+++= +−+−

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 7 70

Methods for Solving the Partial Differential Equations…

The Gauss-Seidel method…

)(25.0 211
1,1,,1,1 ij

kkkkk
ij fhuuuuu

jijijiji
−+++= −−

+−+−

(i,j)
(i+1,j)(i-1,j)

(i,j+1)

(i,j-1)
• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

Calculation complexity
T = kmN2

where
- N - number of nodes for each dimension,
- m - number of operations for one node,
- k - number of iterations

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 8 70

Algorithm 1: The Sequential Gauss-Seidel Algorithm

// Algorithm 12.1
do {
dmax = 0; // maximum deviation of values u
for (i=1; i<N+1; i++)
for (j=1; j<N+1; j++) {
temp = u[i][j];
u[i][j] = 0.25*(u[i-1][j]+u[i+1][j]+

u[i][j-1]+u[i][j+1]–h*h*f[i][j]);
dm = fabs(temp-u[i][j]);
if (dmax < dm) dmax = dm;

}
} while (dmax > eps);

Code

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 9 70

A Computational Example

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=+−
=+−
=−
=−

∈=

,1,200100
,1,200100
,0,200100
,0,200100

,),(,0),(

xy
yx
xy
yx

Dyxyxf

N = 100
ε = 0.1
k = 210

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 10 70

Parallel Computations for Shared Memory Systems…

The possible way for obtaining software for parallel
computations – rewriting the existing sequential programs
Rewriting can be implemented either automatically by a
complier or directly by a programmer
The second approach prevails as the possibilities of automatic
program analysis for generating parallel versions of programs
are rather restricted
The application of new algorithmic languages oriented at
parallel programming leads to the necessity for a
considerable reprogramming of the existing software

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 11 70

Parallel Computations for Shared Memory Systems…

The possible problem solution is the application of some means
"outside of programming language". For instance, they may be
directives or comments which are processed by a special
preprocessor before the program is compiled
Directives can be used to point out different ways to parallelize a
program, while the original program text remains the same
The preprocessor replaces the parallelism directives by some
additional program code (as a rule in the form of addressing the
procedures of a parallel library)
If there’s no preprocessor, the compiler would ignore directives
and construct the original sequential program code

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 12 70

Parallel Computations for Shared Memory Systems

The unity of the program code for sequential and parallel
calculations reduces the difficulties in parallel programs’

development and maintenance

Conversion of sequential programs to parallel ones by means of
directives’ application allows to implement the stage-by-stage

technology of parallel software development that is greatly
valued in programming

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 13 70

OpenMP Technology

To specify program fragments that can be executed in
parallel, the programmer adds directives (C/C++) or
comments (Fortran) into the program
These directives (or comments) allow to determine the parallel
regions of the program

As a result of this approach the program can be represented as
a sequence of interleaved serial (one-thread) and parallel

(multi-thread) parts of the code
Such type of computing is usually referred as the fork-join
(or pulsatile) parallelism

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 14 70

Algorithm 1.2: The first variant of the Gauss-Seidel parallel
algorithm

// Algorithm 12.2
omp_lock_t dmax_lock;
omp_init_lock (dmax_lock);
do {
dmax = 0; // maximum deviation of values u

#pragma omp parallel for shared(u,n,dmax) private(i,temp,d)
for (i=1; i<N+1; i++) {

#pragma omp parallel for shared(u,n,dmax) private(j,temp,d)
for (j=1; j<N+1; j++) {

temp = u[i][j];
u[i][j] = 0.25*(u[i-1][j]+u[i+1][j]+

u[i][j-1]+u[i][j+1]–h*h*f[i][j]);
d = fabs(temp-u[i][j])
omp_set_lock(dmax_lock);
if (dmax < d) dmax = d;

omp_unset_lock(dmax_lock);
} // the end of inner parallel region

} // the end of outer parallel region
} while (dmax > eps);

Code

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 15 70

The Results of Computational Experiments

Gauss-Seidel sequential
method (algorithm 12.1) Parallel algorithm 12.2

k T k T S

100 210 0,06 210 1,97 0,03

200 273 0,34 273 11,22 0,03

300 305 0,88 305 29,09 0,03

400 318 3,78 318 54,20 0,07

500 343 6,00 343 85,84 0,07

600 336 8,81 336 126,38 0,07

700 344 12,11 344 178,30 0,07

800 343 16,41 343 234,70 0,07

900 358 20,61 358 295,03 0,07

1000 351 25,59 351 366,16 0,07

2000 367 106,75 367 1585,84 0,07

3000 370 243,00 370 3598,53 0,07

Grid size

k – the number of iterations,

T – the execution time,

S – the speedup

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 16 70

Estimation of the Approach

The developed parallel algorithm provides the solution to
the given problem
It can be used up to N2 processors for program
execution
There are the excessively high synchronization of the
parallel regions of the program
Low level of processors’ load

Low efficiency

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 17 70

Problem: Blocking in Mutual Exclusion…

Each parallel thread after processing values must check
(and probably change) the value dmax

The permission for using the variable has to be obtained
by one thread only. The other threads must be blocked.
After the shared variable is released the next thread may
get control, etc.

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 18 70

Problem: Blocking in Mutual Exclusion

Ex
ec

ut
io

n
tim

e

Parallel execution

Blocking

Sequential execution

Processors (threads)
 1 2 3 4 5 6 7 8

As a result a multithread parallel program turns practically into
a sequentially executable code

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 19 70

Algorithm 1.3: The Second Variant of the Gauss-Seidel
Parallel Algorithm

// Algorithm 12.3
omp_lock_t dmax_lock;
omp_init_lock(dmax_lock);
do {
dmax = 0; // maximum deviation of values u

#pragma omp parallel for
shared(u,n,dmax)private(i,temp,d,dm)
for (i=1; i<N+1; i++) {

dm = 0;
for (j=1; j<N+1; j++) {

temp = u[i][j];
u[i][j] = 0.25*(u[i-1][j]+u[i+1][j]+

u[i][j-1]+u[i][j+1]–h*h*f[i][j]);
d = fabs(temp-u[i][j]);
if (dm < d) dm = d;

}

omp_set_lock(dmax_lock);
if (dmax < dm) dmax = dm;

omp_unset_lock(dmax_lock);
}

} // the end of parallel region
} while (dmax > eps); Code

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 20 70

The Results of Computational Experiments

Gauss-Seidel sequential
method (algorithm 12.1) Parallel algorithm 12.2 Parallel algorithm 12.3

k T k T S k T S

100 210 0,06 210 1,97 0,03 210 0,03 2,03

200 273 0,34 273 11,22 0,03 273 0,14 2,43

300 305 0,88 305 29,09 0,03 305 0,36 2,43

400 318 3,78 318 54,20 0,07 318 0,64 5,90

500 343 6,00 343 85,84 0,07 343 1,06 5,64

600 336 8,81 336 126,38 0,07 336 1,50 5,88

700 344 12,11 344 178,30 0,07 344 2,42 5,00

800 343 16,41 343 234,70 0,07 343 8,08 2,03

900 358 20,61 358 295,03 0,07 358 11,03 1,87

1000 351 25,59 351 366,16 0,07 351 13,69 1,87

2000 367 106,75 367 1585,84 0,07 367 56,63 1,89

3000 370 243,00 370 3598,53 0,07 370 128,66 1,89

Grid size

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 21 70

Estimation of the Approach

Considerable decrease in the number of shared variable
access
The maximum possible parallelism decreases to the level
of N
As a result – a considerable decrease in costs of thread
synchronization and a decrease of computation
serialization effect

The best speedup parameters

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 22 70

Problem: Indeterminacy in Parallel Calculations

The generated sequence of data processing may vary at
several program executions with the same initial data
The location of threads in the problem domain D may be
different - some threads may pass ahead the others and vice
versa
This tread location structure can vary from execution to
execution. The reason of such behavior is a race condition of
threads

The time dynamics of parallel thread execution
should not have an influence on calculations

carried out by parallel algorithms and programs

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 23 70

Race Condition of Threads

A possible solution: capture and blocking of the used rows

 Processors
(threads)

previous iteration values

Processor 2 passes ahead
(the “old” values are used)

current iteration
l

1
2
3

1
2
3

1
2
3

Processor 2 lacks behind
(“new” values are used)

Processor 2 intermediate (“old”
and “new” values are used)

grid nodes, for which the “new”
values are executed

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 24 70

Problem: Deadlocks

For the mutual exclusion of access to the grid nodes a set of
semaphores row_lock[N] may be introduced. It will allow the
threads to block the access to their grid rows

// the thread is processing the row i
omp_set_lock(row_lock[i]);
omp_set_lock(row_lock[i+1]);
omp_set_lock(row_lock[i-1]);
// processing the grid row i
omp_unset_lock(row_lock[i]);
omp_unset_lock(row_lock[i+1]);
omp_unset_lock(row_lock[i-1]);

Thread 1 Thread 2

Row 1

Row 2

The threads block first rows 1 and 2 and only then pass over to
blocking the rest of the rows – deadlock

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 25 70

Deadlock Avoidance

Approach: the appropriate order in rows’ blocking

// the thread is processing the row i
omp_set_lock(row_lock[i+1]);
omp_set_lock(row_lock[i]);
omp_set_lock(row_lock[i-1]);
// < processing the grid row i >
omp_unset_lock(row_lock[i+1]);
omp_unset_lock(row_lock[i]);
omp_unset_lock(row_lock[i-1]);

Indeterminacy of calculations is not provided yet

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 26 70

Elimination of Calculation Indeterminacy

To eliminate calculation indeterminacy the Gauss-
Jacobi method can be used, which use separate
places to store the results of the previous and the
current iterations

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 27 70

Algorithm 1.4: The Parallel Gauss-Jacobi method…

// Algorithm 12.4
omp_lock_t dmax_lock;
omp_init_lock(dmax_lock);
do {

dmax = 0; // maximum deviation of values u
#pragma omp parallel for shared(u,n,dmax)\

private(i,temp,d,dm)
for (i=1; i<N+1; i++) {

dm = 0;
for (j=1; j<N+1; j++) {

temp = u[i][j];
un[i][j] = 0.25*(u[i-1][j]+u[i+1][j]+

u[i][j-1]+u[i][j+1]–h*h*f[i][j]);
d = fabs(temp-un[i][j])
if (dm < d) dm = d;

}

to be continued

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 28 70

Algorithm 1.4: The Parallel Gauss-Jacobi method

omp_set_lock(dmax_lock);
if (dmax < dm) dmax = dm;

omp_unset_lock(dmax_lock);
}

} // the end of parallel region

for (i=1; i<N+1; i++) // data update
for (j=1; j<N+1; j++)

u[i][j] = un[i][j];
} while (dmax > eps);

Code

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 29 70

The results of Computational Experiments

Sequential Gauss-Jacobi method
(algorithm 12.4)

Parallel Gauss-Jacobi method developed on
the analogy of the algorithm 12.3

k T k T S

100 5257 1,39 5257 0,73 1,90

200 23067 23,84 23067 11,00 2,17

300 26961 226,23 26961 29,00 7,80

400 34377 562,94 34377 66,25 8,50

500 56941 1330,39 56941 191,95 6,93

600 114342 3815,36 114342 2247,95 1,70

700 64433 2927,88 64433 1699,19 1,72

800 87099 5467,64 87099 2751,73 1,99

900 286188 22759,36 286188 11776,09 1,93

1000 152657 14258,38 152657 7397,60 1,93

2000 337809 134140,64 337809 70312,45 1,91

3000 655210 247726,69 655210 129752,13 1,91

Grid size

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 30 70

Estimation of the Approach

Uniqueness of the calculations
Use of the additional memory
Smaller convergence rate

Another possible approach to eliminate the mutual
dependences of parallel threads is to apply the red/black
row alteration scheme. In this scheme the execution of each
iteration is subdivided into two sequential stages:

– At the first stage only the rows with even numbers are
processed,

– At the second stage - the rows with odd numbers are used

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 31 70

Red/Black Row Alteration Scheme

border values previous iteration values

Stage 1

Stage 2

values after stage 1 of the current
iteration

values after stage 2 of the current
iteration

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 32 70

Estimation of the Approach…

No additional memory is required
The algorithm guarantees uniqueness of calculations,
which do not coincide with the results obtained by means of
sequential algorithm
Smaller convergence rate

Potentiality for the increase in the efficiency
of calculations

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 33 70

Estimation of the Approach

The Gauss-Jacobi method Red/black row alteration
scheme

Additional memory is not
required

Use of the additional
memory

The algorithm guarantees uniqueness of calculations,
though the obtained results may not coincide with the
results of the sequential calculations

Calculation schemes demonstrate the convergence
rate, which is worse than the original convergence
rate of the Gauss-Seidel method

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 34 70

Parallel Wave Computation Scheme…

Let us now consider the parallel algorithms with the following
characteristics - the performed calculations and the obtained results
have to be completely identical to the ones of the original sequential
method
Among such techniques - the wavefront or hyperplane method
The wavefront method can be explained as follows – it is evident that to
provide calculations identical as at the original sequential method the
following should be taken into account:
– At the first step the node u11 may be processed only,
– Then – at the second step - the node u21 and u12 may be recalculated, etc.

As a result at each step the nodes that may be processed form
a bottom-up grid diagonal with the numbers determined by the step
number

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 35 70

Parallel Wave Computation Scheme…

border values values of the previous
iteration

Growing wave

values of the current iteration nodes, at which values can be
recalculated

Wave peak Decaying wave

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 36 70

Algorithm 1.5: Parallel Algorithm Based on Wave
Calculation Scheme…

// Algorithm 12.5
omp_lock_t dmax_lock;
omp_init_lock(dmax_lock);

do {
dmax = 0; // maximum variation of values u

// growing wave (nx – wave size)
for (nx=1; nx<N+1; nx++) {

dm[nx] = 0;
#pragma omp parallel for shared(u,nx,dm) private(i,j,temp,d)

for (i=1; i<nx+1; i++) {
j = nx + 1 – i;
temp = u[i][j];

u[i][j] = 0.25*(u[i-1][j]+u[i+1][j]+u[i][j-1]+u[i][j+1]*h*f[i][j]);
d = fabs(temp-u[i][j])
if (dm[i] < d) dm[i] = d;

} // the end of parallel region
}

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 37 70

Algorithm 1.5: Parallel Algorithm Based on Wave
Calculation Scheme

// decaying wave
for (nx=N-1; nx>0; nx--) {
#pragma omp parallel for shared(u,nx,dm) private(i,j,temp,d)

for (i=N-nx+1; i<N+1; i++) {
j = 2*N - nx – I + 1;
temp = u[i][j];
u[i][j] = 0.25*(u[i-1][j]+u[i+1][j]+u[i][j-1]+u[i][j+1]–h*h*f[i][j]);
d = fabs(temp-u[i][j])
if (dm[i] < d) dm[i] = d;

} // the end of parallel region
}

#pragma omp parallel for shared(n,dm,dmax) private(i)
for (i=1; i<nx+1; i++) {

omp_set_lock(dmax_lock);
if (dmax < dm[i]) dmax = dm[i];

omp_unset_lock(dmax_lock);
} // the end of parallel region

} while (dmax > eps);

Code

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 38 70

Parallel Wave Computation Scheme

The final part of calculations for computing the maximum deviation of
values u is the least efficient due to high additional synchronization
cost
Chucking (fragmentation) – the technique of increasing sequential
computation blocks to reduce the synchronization cost
The possible variant to implement this approach may be the following:

chunk = 200; // sequential part size
#pragma omp parallel for shared(n,dm,dmax)private(i,d)
for (i=1; i<nx+1; i+=chunk) {
d = 0;
for (j=i; j<i+chunk; j++)
if (d < dm[j]) d = dm[j];

omp_set_lock(dmax_lock);
if (dmax < d) dmax = d;

omp_unset_lock(dmax_lock);
} the end of parallel region

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 39 70

The Results of Computational Experiments

Sequential Gauss-Seidel
method (algorithm 12.1) Parallel algorithm 12.5

k t k t S

100 210 0,06 210 0,30 0,21

200 273 0,34 273 0,86 0,40

300 305 0,88 305 1,63 0,54

400 318 3,78 318 2,50 1,51

500 343 6,00 343 3,53 1,70

600 336 8,81 336 5,20 1,69

700 344 12,11 344 8,13 1,49

800 343 16,41 343 12,08 1,36

900 358 20,61 358 14,98 1,38

1000 351 25,59 351 18,27 1,40

2000 367 106,75 367 69,08 1,55

3000 370 243,00 370 149,36 1,63

Grid size

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 40 70

Estimation of the Approach

Low efficiency of cache use
In order to increase the computation performance by
efficient cache utilization the following conditions need to
be provided:

– The performed calculations use the same data repeatedly
(data processing locality),

– The performed calculations provide access to memory
elements with sequentially increasing addresses
(sequential access)

To meet such requirements the procedure of processing
some rectangular blocks of the grid should be considered

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 41 70

Block-structured (Checkerboard) Decomposition

border values

previous iteration values

current iteration values

nodes which values can be
recalculated

values, which must be
transmitted among the block
borders

 grid node
blocks

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 42 70

Algorithm 1.6: Wavefront Method Base on
Checkerboard Data Decomposition

//Algorithm 12.6
do {
// growing wave (wave size is nx+1)

for (nx=0; nx<NB; nx++) { // NB block number
#pragma omp parallel for shared(nx) private(i,j)

for (i=0; i<nx+1; i++) {
j = nx – i;
// <processing a block with coordinates (i,j)>

} // the end of parallel region
}
// decaying wave
for (nx=NB-2; nx>-1; nx--) {

#pragma omp parallel for shared(nx) private(i,j)
for (i=0; i<nx+1; i++) {
j = 2*(NB-1) - nx – i;
// <processing a block with coordinates (i,j)>

} // the end of parallel region
}
// <calculation of error estimation >

} while (dmax > eps); Code

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 43 70

The Results of Calculation Experiments

Sequential Gauss-Seidel
method (algorithm 12.1) Parallel algorithm 12.5 Parallel algorithm 12.6

K T k T S k T S

100 210 0,06 210 0,30 0,21 210 0,16 0,40

200 273 0,34 273 0,86 0,40 273 0,59 0,58

300 305 0,88 305 1,63 0,54 305 1,53 0,57

400 318 3,78 318 2,50 1,51 318 2,36 1,60

500 343 6,00 343 3,53 1,70 343 4,03 1,49

600 336 8,81 336 5,20 1,69 336 5,34 1,65

700 344 12,11 344 8,13 1,49 344 10,00 1,21

800 343 16,41 343 12,08 1,36 343 12,64 1,30

900 358 20,61 358 14,98 1,38 358 15,59 1,32

1000 351 25,59 351 18,27 1,40 351 19,30 1,33

2000 367 106,75 367 69,08 1,55 367 65,72 1,62

3000 370 243,00 370 149,36 1,63 370 140,89 1,72

Grid size

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 44 70

Estimation of the Approach

Block processing is performed on different processors and
the blocks are mutually disjoint - as a results there are no
additional costs to support for cache coherency of different
processors
The situations when processors stay idle are possible

It is possible to increase the efficiency of calculations

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 45 70

Processor Load Balancing

The block size determines the granularity of parallel
computations
Choosing the level of granularity it is possible to provide the
required efficiency of parallel methods
To provide the uniform processor loads (load balancing) all
the computational works can be arranged as a job queue
In the course of computations the processor, which is already
unloaded, may ask for a job from the queue

A job queue is the general management scheme of
load balancing for a shared memory system

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 46 70

Algorithm 1.7: Load Balancing Based on
Job Queue Management Scheme

//Algorithm 12.7
// <data initialization>
// <loading the initial block pointer into the job queue>
// pick up the block from the job queue (if the job queue is not empty)
while ((pBlock=GetBlock()) != NULL) {
// <block processing>
// marking the neighboring block readiness for processing
omp_set_lock(pBlock->pNext.Lock); // right-hand neighbor

pBlock->pNext.Count++;
if (pBlock->pNext.Count == 2)

PutBlock(pBlock->pNext);
omp_unset_lock(pBlock->pNext.Lock);
omp_set_lock(pBlock->pDown.Lock); // lower neighbor

pBlock->pDown.Count++;
if (pBlock->pDown.Count == 2)

PutBlock(pBlock->pDown);
omp_unset_lock(pBlock->pDown.Lock);

} // the end of computations, as the queue is empty

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 47 70

Parallel Computations for Distributed Memory Systems

Many parallel computation problems such as the
race condition, deadlocks, serialization are common
for the systems with shared and distributed memory

The communication of parallel program parts on
different processors can only be provided through
message passing

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 48 70

Data Decomposition Schemes

In the considered the Dirichlet problem there are two
different data decomposition schemes:
– The one-dimensional or striped decomposition of

the domain grid,
– The two-dimensional or block-structured

(checkerboard) decomposition of the domain grid
In case of striped decomposition the domain grid is
divided into horizontal or vertical strips
The number of strips is defined by the number of
processors. The size of strips is usually equal
The strips are distributed among the processors for
processing

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 49 70

Striped Decomposition

Remarks:
– The border rows of the previous and the next strips should

be copied on the processor, which performs processing
a strip,

– Border row copying should be performed prior to the
beginning of the execution of each method iteration

1

 • • • • • • •

 • • • • • • •
 • • • • • • •

 • • • • • • •
 • • • • • • •

 • • • • • • •
 • • • • • • •

0

Processors

2

 • • • • • • •

 • • • • • • •
 • • • • • • •

 • • • • • • •
 • • • • • • •

 • • • • • • •
 • • • • • • •

(i,j)
(i+1,j)(i-1,j)

(i,j+1)

(i,j-1)

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 50 70

Algorithm 1.8: The Gauss-Seidel Method, the Striped
Data Decomposition

// Algorithm 12.8
// The Gauss-Seidel method, the striped decomposition
// operations performed on each processor
do {

// <border row exchange between the neighbors>
// <strip processing>
// <calculating the computational error dmax>

while (dmax > eps); // eps – the required accuracy

Code

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 51 70

Data Distribution between Processors…

At the first stage each processor
transmits its lowest border row to
the following processor and
receives the analogous row from
the previous processor
At the second stage processors
transmit their upper border rows to
the previous neighbors and receive
the analogous rows from the
following neighbor

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 52 70

Data Distribution between Processors…

Carrying out such data transmission operations may be
implemented as follows:
// transmission of the lowest border row to the following
// processor and receiving the transmitted border row
// from the previous processor

if (ProcNum != NP-1)Send(u[M][*],N+2,NextProc);
if (ProcNum != 0)Receive(u[0][*],N+2,PrevProc);

Such implemented scheme produces the strictly sequential
execution of data transmission operations
Applying nonblocking communications may not provide an
efficient parallel scheme of processor interactions

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 53 70

Parallelization of Data Communications

At the first step all odd processors transmit data, and the even
processors receive the data
At the second step the processors change their roles: the even
processors perform the operation Send, the odd processors
perform the operation Receive

// transmission of the lowest border row to the following processor
// and receiving the transmitted row from the previous processor
if (ProcNum % 2 == 1) { // odd processor
if (ProcNum != NP-1)Send(u[M][*],N+2,NextProc);
if (ProcNum != 0)Receive(u[0][*],N+2,PrevProc);

}
else { // even processor
if (ProcNum != 0)Receive(u[0][*],N+2,PrevProc);
if (ProcNum != NP-1)Send(u[M][*],N+2,NextProc);

}

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 54 70

Collective Communications

Operation of accumulating and broadcasting the data may be
implemented by the use of the cascade scheme
Obtaining of the maximum value of local errors calculated by the
processors may be provided by means of the following
technique:
– At the first step finding of the maximum values for pairwise grouped

processor - such calculations may be performed at different processor
pairs in parallel,

– At the second step analogous pairwise calculations may be applied for
finding the maximum values among the obtained results, etc.

According with the cascade scheme it is necessary to perform
log2p of parallel iterations to calculate the total maximum value
(p is the number of processors)

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 55 70

Algorithm 1.8: The Gauss-Seidel Method, Implementation
with Collective Communication Operations

// Algorithm 12.8 – Implementation with Collective Operations

// The Gauss-Seidel method, the striped decomposition
// operations performed on each processor
do {

// border strip row exchange with the neighbors
Sendrecv(u[M][*],N+2,NextProc,u[0][*],N+2,PrevProc);
Sendrecv(u[1][*],N+2,PrevProc,u[M+1][*],N+2,NextProc);

// <strip processing with the error estimation dm >
// <calculating the computational error dmax>
Reduce(dm,dmax,MAX,0);

Broadcast(dmax,0);

} while (dmax > eps); // eps – the required accuracy

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 56 70

The Results of Calculations Experiments

Gauss-Seidel sequential
method Parallel algorithm 1.8

k T k T S

100 210 0,06 210 0,54 0,11

200 273 0,35 273 0,86 0,41

300 305 0,92 305 0,92 1,00

400 318 1,69 318 1,27 1,33

500 343 2,88 343 1,72 1,68

600 336 4,04 336 2,16 1,87

700 344 5,68 344 2,52 2,25

800 343 7,37 343 3,32 2,22

900 358 9,94 358 4,12 2,41

1000 351 11,87 351 4,43 2,68

2000 367 50,19 367 15,13 3,32

3000 364 113,17 364 37,96 2,98

Grid size

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 57 70

Striped Wavefront Computations

To form a wavefront calculations each strip can be
represented logically as a set of blocks
As a result of such logical structure the wavefront
computation scheme may be executed. At the first step the
block marked by the number 1 may be processed. Then – at
the second step – the blocks marked by the number 2 may be
recalculated, etc.

Pr
oc

es
so

rs
 1

0

2

 1 2 3 4 5 6 7 8

 2 3 4 5 6 7 8 9

 3 4 5 6 7 8 9 10

 4 5 6 7 8 9 10 11

3

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 58 70

Block-structured (Checkerboard) Decomposition…

In case of the block-structured (checkerboard) data
decomposition the number of the border rows on
each processor is increased, which leads
correspondingly to a greater number of data
communications in the border row transmission (but
the number of transmitted elements is reduced)
The use of the checkerboard scheme of data
decomposition is appropriate if the number of grid
nodes is essentially large

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 59 70

Block-structured (Checkerboard) Decomposition…

// Algorithm 12.9
// The Gauss-Seidel method, the striped decomposition
// operations executed on each processor
do {
// obtaining border nodes
if (ProcNum / NB != 0) { // nonzero row of processors
// obtaining data from upper processor
Receive(u[0][*],M+2,TopProc); // upper row
Receive(dmax,1,TopProc); // computational error

}
if (ProcNum % NB != 0) { // nonzero column of processors
// obtaining data from left processor
Receive(u[*][0],M+2,LeftProc); // left column
Receive(dm,1,LeftProc); // computational error
If (dm > dmax) dmax = dm;

}

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 60 70

Block-structured (Checkerboard) Decomposition

// <processing a block with computational error dmax >
// transmission of border nodes
if (ProcNum / NB != NB-1) { // processor row is not last
//data transmission to the lower processor
Send(u[M+1][*],M+2,DownProc); // bottom row
Send(dmax,1,DownProc); // computational error

}
if (ProcNum % NB != NB-1) { // processor column is not last

// data transmission to the right processor
Send(u[*][M+1],M+2,RightProc); // right column
Send(dmax,1, RightProc); // computational error

}
// synchronization and distribution of the value dmax
Barrier();
Broadcast(dmax,NP-1);

} while (dmax > eps); // eps – the required accuracy

Code

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 61 70

Computational Pipelining (Multiple Wavefront
Computation Scheme)…

The wavefront computation efficiency decreases
considerably because the processors perform calculations
only at the moment when their blocks belongs to the wave
computation front

To improve the load balancing among the processors a
multiple wavefront computation scheme can be applied

The multiple wavefront method can be explained as
follows: the processors may start processing the blocks of
the following wave after executing the current calculation
iteration

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 62 70

Computational Pipelining (Multiple Wavefront
Computation Scheme)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

blocks of the previous iteration

Growing wave

blocks of the current iteration

blocks which nodes can be
recalculated

Wave peak Decaying wave

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 63 70

Overview of Data Communications in Solving Partial
Differential Equations

0 1 2

Processors

One-to-all d istribution of the
grid node number

MPI_Bcast

Corresponding
MPI function

Communicat ion
operation

Scattering strips (blocks) of the
grid nodes

MPI_Scatter

Exchanging borders of
neighbor strips or blocks

MPI_Sendrecv

All-to-all calculating and
distributing the computatinal
error

MPI_Allreduce

Gathering strips (blocks) of
the grid nodes

MPI_Gather

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 64 70

Summary

The ways of parallel algorithm development for the systems
with shared and distributed memory are discussed on the
example of solving the partial differential equations
In case of parallel computations on the systems with shared
memory the main attention is given to the OpenMP
technology; various aspects concerning with parallel
programming are considered
In case of parallel computations on the systems with
distributed memory the problems of the data decomposition
and the information communications between the processors
are discussed; striped and checkerboard decomposition
schemes are presented

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 65 70

Discussions

What are the ways to increase the efficiency of
wavefront methods?
How can the job queue balance the computational
load?
What problems have to be solved in the process of
parallel computation on distributed memory
systems?
What basic operations of data communications are
used in the parallel methods of the Dirichlet
problem?

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 66 70

Exercises

Develop the parallel algorithm implementation of
the wavefront computation scheme including the
block-structured data decomposition scheme
Develop theoretical estimation of the algorithm
execution time
Carry out the computational experiments. Compare
the results of computational experiments and the
obtained theoretical estimations

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 67 70

References

Gergel, V.P., Strongin, R.G. (2001, 2003 - 2 edn.). Introduction to
Parallel Computations. - N.Novgorod: University of Nizhni
Novgorod (In Russian)
Buyya, R. (1999). High Performance Cluster Computing. Volume
1: Architectures and Systems. Volume 2:Programming and
Applications. - Prentice Hall PTR, Prentice-Hall Inc.
Chandra, R. et al. (2000). Programming in OpenMP. - Morgan
Kaufmann.
Group W,Lusk E, Skjellum A. (1994). Using MPI. Portable Parallel
Programming with the Message-Passing Interface. – MIT Press.
Pacheco, P. (1996). Parallel Programming with MPI. - Morgan
Kaufmann.
Pfister, G.P. (1995). In Search of Clusters. - Prentice Hall PTR,
Upper Saddle River, NJ.
Quinn, M. J. (2004). Parallel Programming in C with MPI and
OpenMP. – New York, NY: McGraw-Hill.

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 68 70

Next Section

Parallel Methods for Global Optimization

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 69 70

Author’s Team

Gergel V.P., Professor, Doctor of Science in Engineering,
Course Author

Grishagin V.A., Associate Professor, Candidate of Science in
Mathematics

Abrosimova O.N., Assistant Professor (chapter 10)
Kurylev A.L., Assistant Professor (learning labs 4,5)
Labutin D.Y., Assistant Professor (ParaLab system)
Sysoev A.V., Assistant Professor (chapter 1)
Gergel A.V., Post-Graduate Student (chapter 12, learning lab 6)
Labutina A.A., Post-Graduate Student (chapters 7,8,9,

learning labs 1,2,3, ParaLab system)
Senin A.V., Post-Graduate Student (chapter 11, learning labs on

Microsoft Compute Cluster)
Liverko S.V., Student (ParaLab system)

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Partial Differential Equations
© Gergel V.P. 70 70

About the project

The purpose of the project is to develop the set of educational materials for the
teaching course “Multiprocessor computational systems and parallel programming”.
This course is designed for the consideration of the parallel computation problems,
which are stipulated in the recommendations of IEEE-CS and ACM Computing
Curricula 2001. The educational materials can be used for teaching/training
specialists in the fields of informatics, computer engineering and information
technologies. The curriculum consists of the training course “Introduction to the
methods of parallel programming” and the computer laboratory training “The
methods and technologies of parallel program development”. Such educational
materials makes possible to seamlessly combine both the fundamental education in
computer science and the practical training in the methods of developing the
software for solving complicated time-consuming computational problems using the
high performance computational systems.

The project was carried out in Nizhny Novgorod State University, the Software
Department of the Computing Mathematics and Cybernetics Faculty
(http://www.software.unn.ac.ru). The project was implemented with the support of
Microsoft Corporation.

http://www.software.unn.ac.ru/

	Section 12. Parallel Methods for Partial Differential Equations
	Contents…
	Contents
	Introduction
	Problem Statement
	Methods for Solving the Partial Differential Equations…
	Methods for Solving the Partial Differential Equations…
	Algorithm 1: The Sequential Gauss-Seidel Algorithm
	A Computational Example
	Parallel Computations for Shared Memory Systems…
	Parallel Computations for Shared Memory Systems…
	Parallel Computations for Shared Memory Systems
	OpenMP Technology
	Algorithm 1.2: The first variant of the Gauss-Seidel parallel algorithm
	The Results of Computational Experiments
	Estimation of the Approach
	Problem: Blocking in Mutual Exclusion…
	Problem: Blocking in Mutual Exclusion
	Algorithm 1.3: The Second Variant of the Gauss-Seidel Parallel Algorithm
	The Results of Computational Experiments
	Estimation of the Approach
	 Problem: Indeterminacy in Parallel Calculations
	Race Condition of Threads
	Problem: Deadlocks
	Deadlock Avoidance
	Elimination of Calculation Indeterminacy
	Algorithm 1.4: The Parallel Gauss-Jacobi method…
	Algorithm 1.4: The Parallel Gauss-Jacobi method
	The results of Computational Experiments
	Estimation of the Approach
	Red/Black Row Alteration Scheme
	Estimation of the Approach…
	Estimation of the Approach
	Parallel Wave Computation Scheme…
	Parallel Wave Computation Scheme…
	Algorithm 1.5: Parallel Algorithm Based on Wave Calculation Scheme…
	Algorithm 1.5: Parallel Algorithm Based on Wave Calculation Scheme
	Parallel Wave Computation Scheme
	The Results of Computational Experiments
	Estimation of the Approach
	Block-structured (Checkerboard) Decomposition
	Algorithm 1.6: Wavefront Method Base on Checkerboard Data Decomposition
	The Results of Calculation Experiments
	Estimation of the Approach
	Processor Load Balancing
	Algorithm 1.7: Load Balancing Based on Job Queue Management Scheme
	Parallel Computations for Distributed Memory Systems
	Data Decomposition Schemes
	Striped Decomposition
	Algorithm 1.8: The Gauss-Seidel Method, the Striped Data Decomposition
	Data Distribution between Processors…
	Data Distribution between Processors…
	Parallelization of Data Communications
	Collective Communications
	Algorithm 1.8: The Gauss-Seidel Method, Implementation with Collective Communication Operations
	The Results of Calculations Experiments
	Striped Wavefront Computations
	Block-structured (Checkerboard) Decomposition…
	Block-structured (Checkerboard) Decomposition…
	Block-structured (Checkerboard) Decomposition
	Computational Pipelining (Multiple Wavefront Computation Scheme)…
	Computational Pipelining (Multiple Wavefront Computation Scheme)
	Overview of Data Communications in Solving Partial Differential Equations
	Summary
	Discussions
	Exercises
	References
	Next Section

